This page intentionally left blank
AN INTRODUCTION TO MATHEMATICAL COSMOLOGY

This book provides a concise introduction to the mathematical aspects of the origin, structure and evolution of the universe. The book begins with a brief overview of observational and theoretical cosmology, along with a short introduction to general relativity. It then goes on to discuss Friedmann models, the Hubble constant and deceleration parameter, singularities, the early universe, inflation, quantum cosmology and the distant future of the universe. This new edition contains a rigorous derivation of the Robertson–Walker metric. It also discusses the limits to the parameter space through various theoretical and observational constraints, and presents a new inflationary solution for a sixth degree potential.

This book is suitable as a textbook for advanced undergraduates and beginning graduate students. It will also be of interest to cosmologists, astrophysicists, applied mathematicians and mathematical physicists.

JAMAL NAZRUL ISLAM received his PhD and ScD from the University of Cambridge. In 1984 he became Professor of Mathematics at the University of Chittagong, Bangladesh, and is currently Director of the Research Centre for Mathematical and Physical Sciences, University of Chittagong. Professor Islam has held research positions in university departments and institutes throughout the world, and has published numerous papers on quantum field theory, general relativity and cosmology. He has also written and contributed to several books.
AN INTRODUCTION TO MATHEMATICAL COSMOLOGY

Second edition

J. N. ISLAM

Research Centre for Mathematical and Physical Sciences, University of Chittagong, Bangladesh

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface to the first edition
Preface to the second edition
1. Some basic concepts and an overview of cosmology
 1.1 Summary of general relativity
 1.2 Some special topics in general relativity
 1.2.1 Killing vectors
 1.2.2 Tensor densities
 1.2.3 Gauss and Stokes theorems
 1.2.4 The action principle for gravitation
 1.2.5 Some further topics
2. Introduction to general relativity
3. The Robertson–Walker metric
 3.1 A simple derivation of the Robertson–Walker metric
 3.2 Some geometric properties of the Robertson–Walker metric
 3.3 Some kinematic properties of the Robertson–Walker metric
 3.4 The Einstein equations for the Robertson–Walker metric
 3.5 Rigorous derivation of the Robertson–Walker metric
4. The Friedmann models
 4.1 Introduction
 4.2 Exact solution for zero pressure
 4.3 Solution for pure radiation
 4.4 Behaviour near $t = 0$
 4.5 Exact solution connecting radiation and matter eras
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 The red-shift versus distance relation</td>
<td>71</td>
</tr>
<tr>
<td>4.7 Particle and event horizons</td>
<td>73</td>
</tr>
<tr>
<td>5 The Hubble constant and the deceleration parameter</td>
<td>76</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>76</td>
</tr>
<tr>
<td>5.2 Measurement of H_0</td>
<td>77</td>
</tr>
<tr>
<td>5.3 Measurement of q_0</td>
<td>80</td>
</tr>
<tr>
<td>5.4 Further remarks about observational cosmology</td>
<td>85</td>
</tr>
<tr>
<td>Appendix to Chapter 5</td>
<td>90</td>
</tr>
<tr>
<td>6 Models with a cosmological constant</td>
<td>94</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>94</td>
</tr>
<tr>
<td>6.2 Further remarks about the cosmological constant</td>
<td>98</td>
</tr>
<tr>
<td>6.3 Limits on the cosmological constant</td>
<td>100</td>
</tr>
<tr>
<td>6.4 Some recent developments regarding the cosmological constant and related matters</td>
<td>102</td>
</tr>
<tr>
<td>6.4.1 Introduction</td>
<td>102</td>
</tr>
<tr>
<td>6.4.2 An exact solution with cosmological constant</td>
<td>104</td>
</tr>
<tr>
<td>6.4.3 Restriction of parameter space</td>
<td>107</td>
</tr>
<tr>
<td>7 Singularities in cosmology</td>
<td>112</td>
</tr>
<tr>
<td>7.1 Introduction</td>
<td>112</td>
</tr>
<tr>
<td>7.2 Homogeneous cosmologies</td>
<td>113</td>
</tr>
<tr>
<td>7.3 Some results of general relativistic hydrodynamics</td>
<td>115</td>
</tr>
<tr>
<td>7.4 Definition of singularities</td>
<td>118</td>
</tr>
<tr>
<td>7.5 An example of a singularity theorem</td>
<td>120</td>
</tr>
<tr>
<td>7.6 An anisotropic model</td>
<td>121</td>
</tr>
<tr>
<td>7.7 The oscillatory approach to singularities</td>
<td>122</td>
</tr>
<tr>
<td>7.8 A singularity-free universe?</td>
<td>126</td>
</tr>
<tr>
<td>8 The early universe</td>
<td>128</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>128</td>
</tr>
<tr>
<td>8.2 The very early universe</td>
<td>135</td>
</tr>
<tr>
<td>8.3 Equations in the early universe</td>
<td>142</td>
</tr>
<tr>
<td>8.4 Black-body radiation and the temperature of the early universe</td>
<td>143</td>
</tr>
<tr>
<td>8.5 Evolution of the mass-energy density</td>
<td>148</td>
</tr>
<tr>
<td>8.6 Nucleosynthesis in the early universe</td>
<td>153</td>
</tr>
<tr>
<td>8.7 Further remarks about helium and deuterium</td>
<td>159</td>
</tr>
<tr>
<td>8.8 Neutrino types and masses</td>
<td>164</td>
</tr>
</tbody>
</table>
Contents

9 The very early universe and inflation 166
 9.1 Introduction 166
 9.2 Inflationary models – qualitative discussion 167
 9.3 Inflationary models – quantitative description 174
 9.4 An exact inflationary solution 178
 9.5 Further remarks on inflation 180
 9.6 More inflationary solutions 183
 Appendix to Chapter 9 186

10 Quantum cosmology 189
 10.1 Introduction 189
 10.2 Hamiltonian formalism 191
 10.3 The Schrödinger functional equation for a scalar field 195
 10.4 A functional differential equation 197
 10.5 Solution for a scalar field 199
 10.6 The free electromagnetic field 199
 10.7 The Wheeler–De Witt equation 201
 10.8 Path integrals 202
 10.9 Conformal fluctuations 206
 10.10 Further remarks about quantum cosmology 209

11 The distant future of the universe 211
 11.1 Introduction 211
 11.2 Three ways for a star to die 211
 11.3 Galactic and supergalactic black holes 213
 11.4 Black-hole evaporation 215
 11.5 Slow and subtle changes 216
 11.6 A collapsing universe 218

Appendix 220
Bibliography 238
Index 247